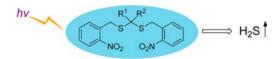
ORGANIC LETTERS

2013 Vol. 15, No. 11 2786–2789

Light-Induced Hydrogen Sulfide Release from "Caged" *gem*-Dithiols


Nelmi O. Devarie-Baez, Powell E. Bagdon, Bo Peng, Yu Zhao, Chung-Min Park, and Ming Xian*

Department of Chemistry, Washington State University, Pullman, Washington 99164, United States

mxian@wsu.edu

Received April 22, 2013

ABSTRACT

"Caged" gem-dithiol derivatives that release H₂S upon light stimulation have been developed. This new class of H₂S donors was proven, by various spectroscopic methods, to generate H₂S in an aqueous/organic medium as well as in cell culture.

Hydrogen sulfide (H₂S) is a notorious toxic gas known for many years to be detrimental to humans. Recently, this molecule has been identified as a cell-signaling mediator and constitutes a member of the gasotransmitter family, together with its congeners nitric oxide (NO) and carbon monoxide (CO). The endogenous generation of H_2S has been predominantly attributed to the enzymatic actions of cystathionine- β -synthase (CBS), cystathionine- γ -lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST or 3-MPST).² In specific tissues, these enzymes utilized cysteine (Cys), homocysteine (Hcy), or other cysteine derivatives to produce H₂S in a controllable manner. Once H₂S is produced, in addition to carrying out its biological functions, H₂S can be rapidly metabolized into two other forms as acid-labile sulfur (Fe-S cluster) and boundsulfane sulfur. Both could in turn serve as in vivo H₂S sources.³

In the past decade, a number of studies have revealed significant roles of H₂S in physiology and pathology.^{1,2}

Among many attributes given to endogenous production of H_2S and/or exogenous administration of H_2S , critical functions are especially exerted in the cardiovascular and nervous systems and regulating inflammation.⁴ However, mechanisms underlying these biological responses are still unclear. These physiological and pathological activities may be derived from biological chemistry occurring at the molecular level. For example, H_2S is highly reactive toward reactive oxygen and nitrogen species including hydrogen peroxide (H_2O_2) ,⁵ superoxide $(O_2^{\bullet-})$,⁶ and peroxynitrite $(OONO^-)$,⁷ establishing its role as an antioxidant. H_2S can also react with RSNO to produce thionitrous acid, HSNO (the smallest *S*-nitrosothiol), which serves as a

^{(1) (}a) Li, L.; Rose, P.; Moore, P. K. Annu. Rev. Pharmacol. Toxicol. **2011**, *51*, 169. (b) Olson, K. R.; Donald, J. A.; Dombkoski, R. A.; Perry, S. F. Repir. Physiol. Neurobiol. **2012**, *184*, 117. (c) Wang, R. Physiol. Rev. **2012**, *92*, 791. (d) Fukuto, J. M.; Carrington, S. J.; Tantillo, D. J.; Harrison, J. G.; Ignarro, L. J.; Freeman, B. A.; Chen, A.; Wink, D. A. Chem. Res. Toxicol. **2012**, *25*, 769.

^{(2) (}a) Kabil, O.; Banerjee, R. J. Biol. Chem. **2010**, 285, 21903. (b) Kimura, H. Amino Acids **2011**, 41, 113. (c) Jhee, K. H.; Kruger, W. D. Antioxid. Redox Signal. **2005**, 7, 813. (d) Zhao, W.; Zhang, J.; Lu, Y.; Wang, R. EMBO J. **2001**, 20, 6008.

^{(3) (}a) Ubuka, T. J. Chromatogr. 2002, 781, 227. (b) Ishigami, M.; Hiraki, K.; Umemura, K.; Ogasawara, Y.; Ishii, K.; Kimura, H. Antioxid. Redox Signal. 2009, 11, 205. (c) Shen, X.; Peter, E. A.; Bir, S.; Wang, R.; Kevil, C. G. Free Radical Biol. Med. 2012, 52, 2276.

^{(4) (}a) Whitffield, N. J.; Kreimier, E. L.; Verdial, F. C.; Skovgaard, N.; Olson, K. R. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R1930. (b) Li, J.; Whiteman, M.; Guan, Y. Y.; Neo, K. L.; Cheng, Y.; Lee, S. W.; Zhao, Y.; Baskar, R.; Tan, C. H.; Moore, P. K. Circulation 2008, 117, 2351. (c) Predmore, B. L.; Lefer, D. J.; Gojon, G. Antioxid. Redox Signal. 2012, 17, 119. (d) Abe, K.; Kimura, H. J. Neurosci. 1996, 16, 1066. (e) Qu, K.; Lee, S. W.; Bian, J. S.; Low, C. M.; Wong, P. T. H. Neurochem. Int. 2008, 52, 155. (f) Fiorucci, S.; Distrutti, E.; Cirino, G.; Wallace, J. L. Gastroenterology 2006, 131, 259. (g) Wallace, J. L. Caliendo, G.; Santagada, V.; Cirino, G.; Fiorucci, S. Gastroenterology 2007, 132, 261.

⁽⁵⁾ Geng, B.; Yang, J.; Qi, Y.; Zhao, J.; Pang, Y.; Du, J.; Tang, C. *Biochem. Biophy. Res. Commun.* **2004**, *313*, 362.

⁽⁶⁾ Cheng, L.; Geng, B.; Yu, F.; Zhao, J.; Jiang, H.; Du, J.; Tang, C. Amino Acids 2008, 34, 573.

⁽⁷⁾ Whiteman, M.; Armstrong, J. S.; Chu, S. H.; Jia-Ling, S.; Wong, B. S.; Cheung, N. S.; Halliwell, B.; Moore, P. L. *Neurochemistry* **2004**, *90*, 765.

⁽⁸⁾ Filipovic, M. R.; Miljkovic, J. Lj.; Nauser, T.; Royzen, M.; Klos, K.; Shubina, T.; Joppenol, W. H.; Lippard, S. J.; Ivanvic-Burmazovic, I. *J. Am. Chem. Soc.* **2012**, *134*, 12016.

cell-permeable nitrosylating agent.⁸ In addition, H₂S can modify protein cysteine residues to give sulfhydrated proteins (protein-S-SH), which are believed to be a critical pathway in regulating protein functions.⁹

The rapid and constant growth of the H₂S-biomedical research has led to a concomitant need of research tools. Recent advances on H₂S-fluorescent sensors and H₂S donors are perfect examples.¹⁰ In particular, H₂S donors are very attractive as many studies have highlighted the therapeutic potentials of exogenous administration of H₂S.¹¹ Among commonly used donors, most researchers are using inorganic sulfide salts such as NaHS and Na₂S. However, H₂S generation from these salts occurs rapidly. It is difficult to control the timing of release, which therefore cannot mimic the endogenous production of H₂S.¹² In some cases, the biological effects displayed by sulfide salts may not represent physiological events induced by the actions of H₂S. Instead, it may be a systematic response to excess amounts of H₂S.¹³

In contrast to inorganic sulfide salts, organic H₂S donors can exert continuous and controllable H2S release at concentrations relative to endogenous levels. Currently, several types of organic H₂S donors have been developed and their mechanisms of H₂S production are diverse (Scheme 1). 11,14 Our group has recently disclosed two types of controllable donors: N-(benzoylthio)benzamide-based donors and persulfide-based donors. 15 Both types are utilizing biological thiols, such as cysteine and glutathione, as the triggers to promote H₂S generation. In addition to the thiol-activation mechanism, we expect that a platform capable of generating H₂S upon external stimulus should be of great interest. Such donors would enable steady and localized concentrations of H₂S at desired timing and cellular locations. In this context, photocaged H₂S donors are potential candidates. Herein we report the design, synthesis, and evaluation of a series of photoactivated H₂S donors.

(13) Olson, K. R. Front. Physiol. 2013, 4, 1.

Scheme 1. Representative Organic H₂S Donors

The idea of caged-H₂S donors was based on the structure of geminal-dithiols (gem-dithiols). It is known that gem-dithiols are unstable species, particularly in aqueous environments, and H₂S can be formed as a decomposition byproduct. ¹⁶ Therefore, we envisioned *gem*-dithiols were useful templates for H₂S donor design. Introduction of protecting groups on free -SH of gem-dithiols should lead to stable derivatives as H₂S donors. In addition, we should be able to manipulate the deprotection strategy to achieve controllable H₂S release. As the first step to develop gemdithiol based donors, we decided to test photoactivation strategy. As shown in Scheme 2, our target was compounds 1, in which the SH groups were protected with a photosensitive 2-nitrobenzyl group. Upon light irradiation, the gem-dithiol intermediate 1A should be produced and subsequent hydrolysis of 1A would liberate H₂S.

Scheme 2. Design of Photoactivated H₂S Donors

The synthesis of this type of donor is illustrated in Scheme 3. Briefly, commercially available 2-nitrobenzyl bromide 2 was treated with thiourea in THF to produce the thiouronium bromide salt 3. Hydrolysis of 3 in the presence of sodium metabisulfite (Na₂S₂O₅) provided 2-nitrobenzenemethanethiol 4 in high yield. Finally, compound 4 was coupled with acetone in the presence of catalytic amount of TiCl₄ to give a model donor 1a.

With the model donor in hand, we examined its H_2S generation capability. The standard methylene blue method was used to monitor H_2S generation (the mechanistic scheme of this method is shown in the Supporting Information). In this study, a 200 μ M solution of 1a in pH 7.4 phosphate buffer/acetonitrile (1:1) was prepared. The compound appeared to be stable and no H_2S release was detected. However, when the solution was subjected to UV irradiation at 365 nm, we observed a time-dependent H_2S production. The concentrations of H_2S reached a maximum of $\sim 36~\mu$ M in about 7 min and dropped afterward, presumably due to volatilization of H_2S gas (Figure 1). 12a

Org. Lett., Vol. 15, No. 11, 2013

^{(9) (}a) Mustafa, A. K.; Gadalla, M. M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S. K.; Barrow, R. K.; Yang, G.; Wang, R.; Snyder, S. H. *Sci. Signal.* **2009**, *2*, ra72. (b) Krishnan, N.; Fu, C.; Pappin, D. J.; Tonks, N. K. *Sci. Signal.* **2011**, *4*, ra86. (c) Paul, B. D.; Snyder, S. H. *Nat. Rev. Mol. Cell Bio.* **2012**, *13*, 499.

⁽¹⁰⁾ For selected reviews, see: (a) Lin, V. S.; Chang, C. J. Curr. Opin. Chem. Biol. 2012, 16, 1. (b) Chan, J.; Dodani, S. C.; Chang, C. J. Nat. Chem. 2012, 4, 973.

^{(11) (}a) Kashfi, K.; Olson, K. R. *Biochem. Pharmacol.* **2012**, *85*, 689. (b) Olson, K. R. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **2011**, *301*, R297. (c) Whiteman, M.; Trionnaire, Le; Chopra, M.; Fox, B.; Whatmore, J. *Clin. Sci.* **2011**, *121*, 459. (d) Caliendo, G.; Cirino, G.; Santagada, V.; Wallace, J. L. *J. Med. Chem.* **2010**, *53*, 6275.

^{(12) (}a) DeLeon, E. R.; Stoy, G. F.; Olson, K. R. *Anal. Biochem.* **2012**, *421*, 203. (b) Calvert, J. W.; Coetzee, W. A.; Lefer, D. J. *Antioxid. Redox Signaling* **2010**, *12*, 1203.

⁽¹⁴⁾ Zhou, Z.; von Wantoch Rekowski, M.; Coletta, C.; Szabo, C.; Bucci, M.; Cirino, G.; Topouzis, S.; Papapetropoulos, A.; Gianns, A. *Bioorg. Med. Chem.* **2012**, *20*, 2675.

^{(15) (}a) Zhao, Y.; Wang, H.; Xian, M. J. Am. Chem. Soc. 2011, 133, 15. (b) Zhao, Y.; Bhushan, S.; Yang, C.; Otsuka, H.; Stein, J. D.; Pacheco, A.; Peng, B.; Devarie-Baez, N. O.; Aguilar, H. C.; Lefer, D. J.; Xian, M. ACS Chem. Biol. 2013dx.doi.org/10.1021/cb400090d.

^{(16) (}a) Cairns, T. L.; Evans, G. L.; Larchar, A. W.; Mckusick, B. C. *J. Am. Chem. Soc.* **1952**, *74*, 3982. (b) Berchtold, G. A.; Edwards, B. E.; Campaigne, E.; Carmack, M. *J. Am. Chem. Soc.* **1959**, *81*, 3148. (c) Voronkov, M.; Shagun, L.; Ermolyuk, L.; Timokhina, L. *J. Sulfur Chem.* **2004**, *25*, 131.

Scheme 3. Synthesis of Photoactivated H₂S Donors

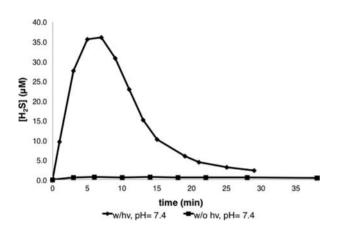
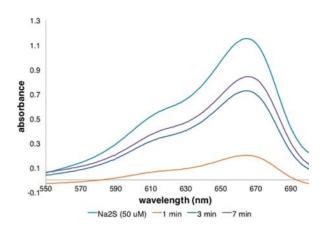
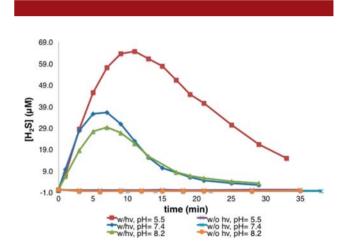



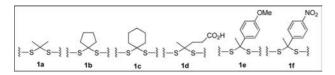
Figure 1. Time-dependent H_2S release of 1a in pH 7.4 phosphate buffer/acetonitrile (1:1).

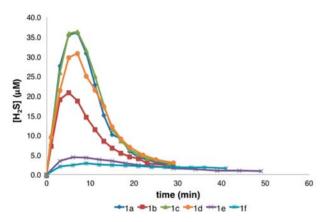

To confirm the signals shown in Figure 1 were indeed from H₂S, we recorded the UV-vis spectra of methylene blue generated from the photolysis of **1a** and compared with the spectra obtained using Na₂S, a standard H₂S precursor. As shown in Figure 2, these absorbance spectra showed identical patterns, and the levels increased when irradiation was prolonged.

Given the potential applications of photoactivated donors for site-specific delivery of H_2S and the diverse cellular pH values, we also studied the effects of pH on H_2S releasing activity of $\mathbf{1a}$. In mild acidic medium (pH = 5.5), H_2S level was found to be much higher than the level generated at neutral pH (Figure 3). This result may indicate the intermediacy of *gem*-dithiol, in which the hydrolysis should be an acid-facilitated process. In contrast, H_2S concentration dropped slightly under mild basic pH (8.2). It should be noted that the donor did not produce any H_2S under these pH values if the irradiation of UV light was absent.

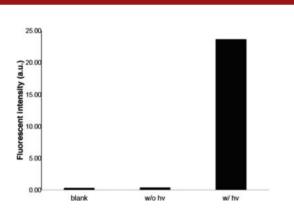
Having demonstrated UV light-induced H_2S generation of 1a, we turned our attention to other derivatives 1b-f, which were prepared using the same protocol shown in Scheme 3. We wondered if structural modifications could

Figure 2. Spectra of methylene blue assay. Blue line: Na_2S (50 μ M). Other lines: H_2S release from **1a** upon irradiation at different times.


Figure 3. H_2S release of **1a** (200 μ M) at different pH's.


modulate H₂S release capability. As shown in Figure 4, alkyl-substituted donors **1b**-**d** exhibited similar H₂S release capability as the model compound **1a**. However, aryl-substituted compounds **1e** and **1f** showed very low activity.

Although the methylene blue method has been widely used to evaluate H_2S donors, this method requires strong acidic conditions and is destructive to biological samples like cells. We expected the photoactivated donors would be used in cell-based studies; therefore nondestructive methods for continuously testing H_2S generation in such samples are needed. The fluorescent probes are appropriate for this purpose. To this end, WSP-1, a H_2S -specific fluorescent probe developed by our group, ¹⁷ was used to monitor the photolysis of 1a in buffers (the structure and reaction mechanism of WSP-1 is shown in the Supporting Information). In this study, a 200 μ M solution of 1a in pH 7.4 phosphate buffer/acetonitrile (1:1) was prepared.


2788 Org. Lett., Vol. 15, No. 11, 2013

⁽¹⁷⁾ Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. *Angew. Chem., Int. Ed.* **2011**, *123*, 10511.

Figure 4. H₂S release of 1a-f. Donor concentration: 200 μ M. Under continuous irradiation.

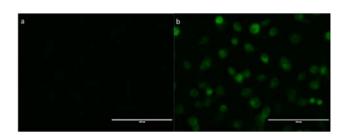


Figure 5. H₂S release of **1a** detected by fluorescence: (a) WSP-1 only (100 μ M); (b) WSP-1 (100 μ M) and **1a** (200 μ M), in the absence of light; (c) WSP-1 (100 μ M) and **1a** (200 μ M), in the presence of light.

The solution was subjected to UV irradiation at 365 nm, and aliquots were withdrawn from the solution at a given time and then detected by WSP-1. We observed a time-dependent H₂S production, similar to that observed when using the methylene blue method. As shown in Figure 5, fluorescence signal increased dramatically when **1a** was

under photolysis (aliquot taken at 9 min). The intensity was approximately 66 folds higher than the solution without light irradiation. The results proved that fluorescence method is appropriate for the evaluation of photoactivated H₂S donors.

Finally, we wondered if these donors could be used to selectively deliver H_2S to cells and conducted a cell-based assay to address this question. In this study, HeLa cells were first incubated with 1d (200 μ M) for 30 min, and the mixture was then exposed to UV light (365 nm) for 15 min. After that, cells were washed and resuspended in new media. WSP-1 (50 μ M) was applied into the system to monitor H_2S in cells. As expected, cells treated with 1d under irradiation showed much stronger fluorescent signals than cells treated with 1d but no irradiation (Figure 6).

Figure 6. H₂S release of **1d** in HeLa cells: (a) **1d** (200 μ M) and WSP-1 (50 μ M), no UV irradiation; (b) **1d** (200 μ M) and WSP-1 (50 μ M), under UV irradiation.

In summary, a series of photoactivated H₂S donors based on the structure of *gem*-dithiol were prepared and evaluated. Our evidence demonstrates the capabilities of these compounds as specific H₂S donors. These "caged" donors could allow spatial and temporal release of H₂S, and study real time H₂S activities. Screening other photolabile groups and examining different activation mechanisms to unmask *gem*-dithiols are ongoing in our laboratory.

Acknowledgment. This work is supported by an American Chemical Society—Teva USA Scholar Grant and the NIH (R01GM088226).

Supporting Information Available. Synthetic procedures, spectroscopic data, and experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

Org. Lett., Vol. 15, No. 11, 2013